Impact of transient soil water simulation to estimated nitrogen leaching and emission at high‐ and low‐deposition forest sites in Southern California

نویسندگان

  • Fengming Yuan
  • Thomas Meixner
  • Mark E. Fenn
  • Jirka Šimůnek
چکیده

[1] Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow module (HYDRUS), for two mixed conifer forests with annual deposition rates of about 70 and 9 kg N ha, in the San Bernardino National Forest. Numerical solution of the Richards equation implemented in HYDRUS water module could improve response of surface soil water dynamics to precipitation pattern, compared to the original, and consequently it resulted in annual N gaseous emission loss about 1.5 ∼ 2 times higher. While the two flow modules predicted similar amounts of annual water drainage, the HYDRUS water module simulated more frequent, but smaller drainage fluxes, which favors soil mineralization and downward transport. In normal precipitation years, annual leaching losses predicted by the HYDRUS coupled DAYCENT model was about 5–18 kg N ha higher due to different temporal patterns of daily water drainage. In dry and wet years, leaching losses were similar. Our analysis suggests that it is necessary to fully capture dynamics of transient water flow (e.g., by numerically solving the transient Richards equation) in order to adequately estimate soil N gaseous emissions and N transport and thus leaching, although it requires more computational resources while the uncertainty in model improvement is still large due to lack of measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acidification trends in south Swedish forest soils 1986-2008 - slow recovery and high sensitivity to sea-salt episodes.

Soil water chemistry in forest soils over 20 years was studied at nine sites in southern Sweden. The aim was to investigate the recovery from acidification and the influence of strong sea salt episodes that occur in the region. All sites but one showed signs of recovery from acidification along with the reduced sulphur deposition, but the recovery progress was slow and the soil water was in mos...

متن کامل

Reduced European emissions of S and N--effects on air concentrations, deposition and soil water chemistry in Swedish forests.

Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO(2) and NO(2), have decreased. The SO(4)-deposition has decreased in parallel with the Eu...

متن کامل

Assessing the risk of N leaching from forest soils across a steep N deposition gradient in Sweden.

Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four di...

متن کامل

CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the g...

متن کامل

Modelling Studies on Soil-mediated Response to Acid Deposition and Climate Variability

The impact of acidifying atmospheric precipitation and climate variability on forest soil was studied using three approaches: (i) dynamic process-oriented modelling, (ii) static vulnerability assessment, and (iii) non-linear response pattern identification. The dynamic soil acidification model MIDAS is presented, with applications at the plot and catchment scale in Norway, Sweden and Finland, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011